
2022-July

1 WRITING CLEAN CODE

In order to make your code readable you have to clean your code regularly. This step is very important
to not to slow down the programming process in the future programming. You will probably spent the
same amount of time cleaning the code that you needed for writing a working version.

In general you can follow some rules:

1. Use FUNCTIONS for every single action,
2. COMMENT the code only where is necessary,
3. Use EXPLANATORY CONSTANTS and VARIABLES

to make your code clean.

Our aim is to write more readable code like in prog. ??:

1 #include "RobotMovingFunctions.h"
2 void setup()
3 {
4 setIOpins();
5 moveForward();
6 delay(3000);
7 stopTheRobot();
8 }
9

10 void loop()
11 {
12
13 }

: Writing Clean Code. {#lst:230_Writing_Clean_Code} . . . we will do it in several steps.

1.1 Tasks:

1. Write programming functions for moving the robot in several dirrections:

1. moveForward(),
2. moveLeft(),
3. moveRight(),
4. moveBackward(),
5. stopTheRobot().

2. Save all the functions into header file: RobotMovingFunctions.h. An example of header file
is shown in prog. 1

dr. David Rihtaršič 1

2022-July

Program 1: Header file example of Robot moving functions.

1 /****************************
2 * IO pins of the Robot
3 ***************************/
4 const int LEFT_MOTOR_PIN_1 = 7;
5 const int LEFT_MOTOR_PIN_2 = 6;
6 const int RIGHT_MOTOR_PIN_2 = 5;
7 const int RIGHT_MOTOR_PIN_1 = 4;
8 /****************************
9 * Function declarations

10 ***************************/
11 void setIOpins();
12 void moveForward();
13 /****************************
14 * Function definitions
15 ***************************/
16 void setIOpins(){
17 pinMode(LEFT_MOTOR_PIN_1, OUTPUT);
18 pinMode(LEFT_MOTOR_PIN_2, OUTPUT);
19 pinMode(RIGHT_MOTOR_PIN_1, OUTPUT);
20 pinMode(RIGHT_MOTOR_PIN_2, OUTPUT);
21 }
22 void moveForward(){
23 digitalWrite(LEFT_MOTOR_PIN_1, LOW);
24 digitalWrite(LEFT_MOTOR_PIN_2, HIGH);
25 digitalWrite(RIGHT_MOTOR_PIN_1, LOW);
26 digitalWrite(RIGHT_MOTOR_PIN_2, HIGH);
27 }

1.2 Questions:

1. <++>
2. <++>
3. <++>

1.3 CLEAN CODE EXPLAINED

1.3.1 Comments - YES and NO

Comments are very helpful and necessary. Keep them short and meaningful whenever is needed. May
also help during thinking process while beginning designing the code.

dr. David Rihtaršič 2

2022-July

1 // robot will go forward
2 digitalWrite(7,HIGH);
3 digitalWrite(6,LOW);
4 digitalWrite(5,HIGH);
5 digitalWrite(4,LOW);

Don’t use comments where the code is self-explanatory, for example:

1 delay(3000); //wait for 3000ms

1.3.2 Functions

Concatenate programming code into meaningful functions is a must! Previous example of code for
driving a robot forward is very difficult to understand at first sight. We can make cleaner code
as is shown in nex example where is easier to understand what-is-what:

1 void robotForward()
2 {
3 digitalWrite(LEFT_MOTOR_PIN_1,HIGH);
4 digitalWrite(LEFT_MOTOR_PIN_2,LOW);
5 digitalWrite(RIGHT_MOTOR_PIN_1,HIGH);
6 digitalWrite(RIGHT_MOTOR_PIN_2,LOW);
7 }

Compact code is more understandable than large one, see next example:

1 void setup()
2 {
3 setIOpins();
4 robotForeward();
5 delay(3000);
6 robotStop();
7 }

1.3.2.1 Function declaration Function declaration is highly advisable since allow you a quick
overview of available functions in a current file. It is like a table of functions with it’s return type and
parameters. All declarations are tipically found at the beginig of the file.

1 void moveForward();
2 void moveLeft();
3 void moveLeft_PWM(int pwm_value);

1.3.2.2 Function Definition A function definition provides the actual body of the function.

dr. David Rihtaršič 3

2022-July

1 void robotForward()
2 {
3 digitalWrite(LEFT_MOTOR_PIN_1,HIGH);
4 digitalWrite(LEFT_MOTOR_PIN_2,LOW);
5 digitalWrite(RIGHT_MOTOR_PIN_1,HIGH);
6 digitalWrite(RIGHT_MOTOR_PIN_2,LOW);
7 }

1.3.3 Constants

Use explanatory constants to more clearly represent unintuitive numbers or other abstract values. Use
these constants instead of comments since these numbers will appear several times during program-
ming code.

1 const int LEFT_MOTOR_PIN_1 = 7;
2 const int LEFT_MOTOR_PIN_2 = 6;

Now you can easily see why the pins are set as OUTPUT. Because there is Left motor attached.

1 void setIOpins()
2 {
3 pinMode(LEFT_MOTOR_PIN_1, OUTPUT);
4 pinMode(LEFT_MOTOR_PIN_2, OUTPUT);
5 }

1.3.4 Variables

Use explanatory variables to make if-statements easily readable and thus understandable. Make
boolean variables as short statements with no inverting logic.

For example we will use the case where the robot should stop as soon it hits the obstacle with front
bumper. The worst case scenario of the program could look like this (we have all done it at some
point):

dr. David Rihtaršič 4

2022-July

1 void loop()
2 {
3 if (digitalRead(A0) == FALSE){
4 digitalWrite(7, HIGH);
5 digitalWrite(6, LOW);
6 digitalWrite(5, HIGH);
7 digitalWrite(4, LOW);
8 }else{
9 digitalWrite(7, LOW);

10 digitalWrite(6, LOW);
11 digitalWrite(5, LOW);
12 digitalWrite(4, LOW);
13 }
14 }

And more clean representation of same functionality is shown in next example of the code. Line 3 is
easy readable, simple, clear and easy understandable.

1 void loop()
2 {
3 int front_bumper_is_pressed = digitalRead(BUMPER_INPUT);
4 if (front_bumper_is_pressed) robotStop(); else robotForward();
5 }

1.3.5 Header files

To keep our main program file short and transparent as possible we can put supporting code (e.g. func-
tions, settings, . . .) into separate file and include it at the beginning of the main program. These files
are called header files. We can write a function and save it into header file called “calculate.h”

1 int sumTwoNumbers(int A, int B)
2 {
3 return A+B;
4 }

In our main program we can include the header file and use the function:

1 #include "calculate.h"
2
3 int main()
4 {
5 int a = 5, b = 3;
6 int sum = sumTwoNumbers(a, b);
7 }

In this way our main code is clean and transparent.

dr. David Rihtaršič 5

2022-July

1.3.6 Pre-process

The preprocessors are the directives, which give instructions to the compiler to pre-process the infor-
mation before actual compilation starts (e.g. #include is one of them). You can easily use as such text
substitutions for more clear code reading.

1 #define LEFT_MOTOR_PIN_1 7
2 #define LEFT_MOTOR_PIN_2 6

Remember! #define is really a simple text substitution and is not type-safe. Furthermore, we
have to be certain that our definition will not interfere with other code used outside of our scope
e.g. libraries. The last example is not the best representation of #define usage. In these case the
const int is more proper way to go (allowed type checking, debugging). But #define has other
benefits where const can not be used.

1.3.6.1 Translations The substitutions can be used as a translation and simplification of code. Such
code can be introduced to very young children to get involved in programming.

1 #define vkljuci_led digitalWrite(13,HIGH)
2 #define izkljuci_led digitalWrite(13, LOW)
3 #define pocakaj(time) delay(time)
4 void loop(){
5 vkljuci_led;
6 pocakaj(1000);
7 izkljuci_led;
8 pocakaj(1000);
9 }

1.3.6.2 Debugging You can even substitute function names e.g. debug(txt) with Serial.

println(txt) and easily separate debugging code lines from necessary serial print of data.

1 #define debug(txt) Serial.porintln(txt)
2 void setup()
3 {
4 Serial.begin(9600);
5 debug("Running...")
6 }
7 void loop()
8 {
9 unsigned long myTime = millis();

10 Serial.println(myTime);
11 delay(1000);
12 }

dr. David Rihtaršič 6

2022-July

When we are done with programming and debugging is not needed anymore we can simply change
#define line to nothing:

1 #define debug(txt)

And these programming sentences will not be used. More sophisticated example is shown where
programmer can switch between debugging mode (with #define DBG 1) and normal operation
(with #define DBG 0) where code statement debug("Running...") will not even compile into
program.

1 #define DBG 1
2 #if DBG == 1
3 #define debug(txt) Serial.porintln(txt)
4 #else
5 #define debug(txt)
6 #endif
7 void setup()
8 {
9 Serial.begin(9600);

10 debug("Running...")
11 }

1.4 Summary:

1.5 Issues:

1.5.1 What is the difference between const int and #define?

#define is textual replacement, so it is as fast as it can get. Also it can save some RAM. The
downside is that it’s not type-safe.

const variables may or may not be replaced inline in the code. It is guaranteed to be type-safe
though since it carries its own type with it.

dr. David Rihtaršič 7

	WRITING CLEAN CODE
	Tasks:
	Questions:
	CLEAN CODE EXPLAINED
	Comments - YES and NO
	Functions
	Constants
	Variables
	Header files
	Pre-process

	Summary:
	Issues:
	What is the difference between const int and #define?

